FuelCell Energy **Advanced Technologies -Power Long Term Growth At FuelCell** Energy

June, 2020

Agenda

- i. Addressing Energy's Biggest Challenges
- ii. Can Batteries Alone Get The World's Energy Grid Firm | Balanced?
- iii. Transformation of the Energy Grid
- iv. Fuel Cell Energy Overview
- v. FuelCell Energy Advanced Technologies

Enable the world to live a life empowered by clean energy

Enable the world to live a life empowered by clean energy

FuelCell Energy Differentiated Green Technology Addressing The 4 Major Energy Challenges

Distributed Generation

- Multi-Fuel
- Microgrid
- CHP
- □ Sub-MW through Large MW Scale
- Resiliency | Reliability
- Limited Space Requirements
- Low decibel level
- Avoids transmission costs and losses

Electrolysis & Hydrogen Energy Storage & Hydrogen Power Generation

- High efficiency electrolysis and power generation
- □ High round trip efficiency storage
- Low-cost long duration storage
- Scalable for large-scale bulk storage without battery raw material supply and disposal issues

Distributed Hydrogen

- Hydrogen co-produced with power and heat
- Low carbon footprint with natural gas
- Zero carbon footprint with biogas
- No water consumption
- Hydrogen production near users low transportation cost, avoided transportation emissions

Carbon Capture

- Only technology which produces power while capturing carbon
- Increases output of host plant instead of decreasing output
- Power revenue stream reduces cost of CO₂ capture

Hydrogen Based Energy Storage Advantage

There is not enough lithium battery materials in the world to meet the demand to power large metropolitan areas with intermittent renewable power

Bill Gates from "Inside the Mind of Bill Gates" Documentary:

"Technology like wind and solar won't single handedly shut off any pipes....We can't build enough batteries to store power for the entire world....When Tokyo has a cyclone for four days, wind has to shut off, no sun, where is the energy coming from? Just that energy for those four days is more than all the batteries we make." Shinjuku 新宿区 の Ninato 芝etagaya 世田谷区

- Powering Tokyo for four days would require 3000 GWh of stored energy
- A lithium battery of this size would require more than 600,000 tons of Cobalt, which is more than twice annual Cobalt production
- Hydrogen based storage would require a one-time fill of ~250 million gallons of water across all systems, a small fraction of the 400 billion gallons of water used annually in Tokyo. And storage could range from pressurized tanks, to pipeline systems as needed.

"Inside the Mind of Bill Gates" Netflix documentary

Tokyo power consumption based on Tepco data for 2019, averaged over the year

Source for Cobalt Consumption: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC112285/jrc112285_cobalt.pdf

Hydrogen is the only practical option for very large scale energy storage

The Evolving Energy Grid

FUEL CELL TECHNOLOGY A GROWING SOURCE OF CLEAN, RELIABLE POWER FOR MICROGRID SOLUTIONS, CARBON CAPTURE AND ENERGY STORAGE

A Global Leader in Fuel Cell Technology since 1969

Demand for Clean, Reliable Electricity Driving Adoption of Fuel Cell Technology

Business Segments & Revenue Mix				Differentiated Product Offerings		
Product Sales	Service Offerings	Generation	Advanced Technologies	SureSource 250 & 400 250–400KW Production	SureSource 1500 & 3000 1.4 – 2.8MW Production	SureSource 4000 – 3.7MW Production
Sell projects & systems directly to customers	Long-term service agreements associated with all projects & systems sales	Develop and own projects, and sell power to utilities and end- users under long-term power purchase agreements	Private & publically funded research activities advancing fuel cell technology			
				Advanced Technologies		
- FY18 Revenue Mix -		– Illustrative FY23 Revenue Mix –		SureSource Carbon Capture (ExxonMobil Partnership)	SureSource Hydrogen	Solid Oxide Fuel Cells
					ON-SITE TRI-GENERATION	

Fuel Cell Technology 101

Fuel Cell Technology Overview

- Fuel cells cleanly and efficiently convert chemical energy from hydrogen-rich fuels into electrical power and high quality heat via an electrochemical process
 - The process is highly efficient and emits water rather than pollutants. as there is no burning of fuel
- Similar to a battery, a fuel cell is comprised of many individual cells that are grouped together to form a fuel cell stack
- When a hydrogen-rich fuel such as clean natural gas or renewable biogas enters the fuel cell stack, it reacts electrochemically with oxygen to produce electric current, heat and water
- Fuel cells have the ability to continuously generate electricity as long as fuel is continuously supplied
- FuelCell Energy's SureSource power platforms are based on carbonate fuel cell technology
- To produce electricity, carbonate fuel cells generate hydrogen directly from a fuel source, such as natural gas or renewable biogas, via an internal reforming process
 - This approach, which is patented by FuelCell Energy, is a distinct competitive advantage of carbonate fuel cells

FuelCell Energy Carbonate Fuel Cell Systems

Single-stack Module 250 – 400kW

Four-Stack Module 1.4MW

250 - 400kW SureSource250™ SureSource400™ 47% Electrical Eff, up to 90% Total Eff.

1.4 MW

47% Electrical Eff, up to 90% Total Eff.

2.8 MW SureSource3000[™] 47% Electrical Eff, up to 90% Total Eff.

2.35 MW SureSource Hydrogen™ 2.35 MW Power plus 1270 kg/day Hydrogen

3.7 MW SureSource4000TM 60% Electrical Eff. Up to 80% total Eff

Larger Scale Fuel Cell Parks

Multiple platforms based on a common cell stack technology

Unrivaled Technology to Meet Future Energy Requirements

FuelCell Energy Advantages:

400x smaller land requirement than Solar to produce same total energy output; Solar requires 5x generation capacity due to limited sun availability **Enhances grid resiliency** and offers a continuous supply of ultra-clean & efficient power for the electric grid Easy to site in urban and densely populated areas

Scalable and cost effective as high efficiency fuel cells reduce fuel costs and avoids transmission costs

FuelCell Energy Technology: Winner for Ultra-Clean Baseload Power

Distributed Hydrogen with SureSource Hydrogen Systems

2.3 MW Clean and green power – 18 GWh/year

- 1200 tons per year avoided grid CO₂ emissions with natural gas fuel
- 10,000 tons per year avoided grid CO₂ emissions with biogas fuel
- 5 tons per year avoided NOX

0.5 MMBtu/h thermal energy

- 290 tons per year avoided boiler CO₂ emissions
- 200 lbs per year avoided NOX

1270 kg/day hydrogen

- 1700 tons per year CO₂ reduction vs SMR
- 4200 tons per year CO₂ reduction vs SMR with biogas fuel
- 700 lbs per year NOX reduction vs SMR
- 2 million gallons less water used per year vs SMR

Co-production of power with hydrogen improves economics to produce the most affordable hydrogen

Toyota Port of Long Beach Project

- FuelCell Energy executing a hydrogen generation project with Toyota at the port of Long Beach in Long Beach, California
- Toyota will purchase the hydrogen through a long term purchase agreement, as well as a portion of the electricity generated
- When the plant comes online, the SureSource Hydrogen system will generate approximately 2.3MW of electricity and 1.2 tons of hydrogen per day
- Enough to power the equivalent of about 2,250 average-sized homes and meet the daily driving needs of nearly 1,500 vehicles
- The power generation facility will supply Toyota Logistics Services' operations at the Port, and the location will be the first 100% renewable Toyota facility in North America
- Received favorable opinion from CPUC that confirms project eligibility under BioMAT

Toyota Port of Long Beach Facility needs Hydrogen to fill light vehicles as they arrive in US and trucks

First commercial scale launch project for SureSource Hydrogen Trigeneration

Solid Oxide Applications

7 kW Power Generation 36 kW / 25 kg H₂/day electrolysis 350 cells, 17" height

Power Generation Stack Module – Only runs in power generation mode on a wide range of fuels, including natural gas, bio fuels, propane, and hydrogen

Electrolysis Stack Module – Produces hydrogen from steam with power input

200kW Power Generation System

Electrolysis 2,300 kg/day H2 from 4MW

Energy Storage Stack Module – Alternates between power generation on hydrogen fuel and electrolysis producing hydrogen from water

Energy Storage System 1MW 8 MWh

Versatile platform with multiple commercialization paths

Solid Oxide Electrolysis Advantage: Turning Excess Energy Into Hydrogen

Better basic electrochemical performance ...

... Leads to improved efficiency and economics

- High current density = fewer stacks needed for given hydrogen production rate
- Low electrolysis voltage = less power needed for given electrolysis rate: Higher Electrical Efficiency
- Lower stack hardware requirement and lower power requirement = 30 to 50% lower cost per kg for hydrogen depending on power cost
- At low current densities, Solid Oxide Electrolysis Cells (SOEC) are more than 100% electrically efficient and need thermal energy input to maintain temperature
 - Provides opportunities for waste heat utilization in hydrogen production
 - Allows high round trip energy efficiency in energy storage systems with thermal energy storage

High temperature electrolysis with Solid Oxide cells had demonstrated game changing performance

FuelCell Energy Hydrogen Technologies

- SureSource Hydrogen: Clean, efficient power and hydrogen production from multiple fuels:
 - Green Hydrogen from renewable biogas
 - Low-carbon hydrogen from natural gas, propane, associated gas, coke oven gas
 - Blue hydrogen with carbon capture
- SureSource Electrolysis and Storage: Differentiated high efficiency electrolysis and energy storage where input power is converted to hydrogen
- Stored hydrogen can be converted with high roundtrip efficiency into power or exported to hydrogen user, e.g. industrial user or vehicle fueling station
- SureSource storage is a closed loop platform which drives the differentiated high efficiency and low react cost

Broad portfolio of hydrogen technologies based on carbonate and solid oxide platforms

Future Application – Large scale electrolysis to manage renewables and nuclear

peak nuclear power to hydrogen

"Two HTSE designs have been discussed thus far in the report. ... To keep the capacity payments for the nuclear power plant as high as possible the FuelCell Energy design was selected and will serve as the basis of simulations moving forward."

The ability of Solid Oxide electrolysis systems to use waste heat is an advantage in the nuclear application

Solid Oxide Hydrogen Based Energy Storage

- Solid Oxide Fuel Cells (SOFC) have demonstrated capability to run in electrolysis mode in addition to fuel cell mode, and the ability to switch between, called Reversible Solid Oxide Fuel Cell (RSOFC).
- Solid Oxide cells run much more efficiently than conventional electrolysis, and operate with high efficiency in power generation
- RSOFC stacks with hydrogen and water storage are an advanced energy storage approach:
 - High round trip efficiency
 - Long duration achieved by adding low cost hydrogen and water storage capacity, without the need to add more stacks
 - Inexpensive water is the only reactant added as an initial fill and regenerated with each discharge cycle

Power input to stack Oxygen Stored water Hydrogen to Storage Discharging in fuel cell mode: Air Water to Reversible storage id Oxide ell Stac Hydrogen from Storage Power output from stack

Charging in electrolysis mode:

With water as the only stored reactant, hydrogen based storage has significant advantages for long duration

Hydrogen Based Long Duration Energy Storage System - Batteries Can't Compete

- Hydrogen during charge cycle can be used to provide power during discharge cycle or can be exported to hydrogen user
- Geological storage of hydrogen can provide weekly or seasonal storage
- The storage reactant is water, which is regenerated during power generation discharge – does not depend on limited quantities of lithium or cobalt
- Discharge duration is added by adding inexpensive hydrogen and water storage – so cost of storage capacity reduces significantly with longer duration

 H_2 can be converted back to power or supplied to H_2 user, enhancing project economics

1MW SOFC/SOEC System with 8 hours of hydrogen storage

Flexible energy storage approach based on high efficiency conversion of power to hydrogen and hydrogen to power

Solid Oxide Path to Commercialization

Successful Accomplishments Drive Effective Commercialization Plan

